这节课不同于六年级的其他课型,与前后知识点没有联系,比较孤立。抽屉原理很抽象,依靠学生的逻辑思维能力进行教学。对于师生而言,这节课比较难上。
王老师的这节课是起始入门课,并未讲复杂情况。而且为了使学生更容易理解掌握这个原理,王老师除了使用课本的例题外,还增加了三个对比的由易到难的例题,如鸽飞笼就是简单的,而扑克与花色就是复杂的。通过这种有坡度的安排,使学生通过对比,掌握规律就容易多了。
这节课导入环节是非常有效的。学生对抽屉原理这个题目完全不理解。老师用三支铅笔放在两个文具盒里会出现什么现象,唤起了学生的学习兴趣,使学生拉近了与课题的距离。
新课部分,王老师安排了两次小组合作探究。第一次是对例题进行交流。学生通过摆一摆的实验法和推理的办法对结论进行验证和阐述。由此引出了列举法和假设法。然后老师,顺势抛出了“余2的情况”,将这一规律的应用范围进行了扩展。之后顺理成章的推出了抽屉原理的模型“把M个物体平均分到N个抽屉里……”。使学生对抽屉的原理的认识得到了升华,上升到了理论层次。这个理论在书中是没有的。但在讲这节课中若没有了原理的理论表述是不完整的。
整堂课也有瑕疵:
1、当学生经过操作、讨论得出结论后,教师应尽量留给学生充分的时间让学生自己将结论总结出来,使学生加深对知识的理解。
2、当学生经过讨论得出“总有一个抽屉要放“商+余数”本书时,老师又及时通过实例推翻了这一结论,在此,如果能留给学生更加充分的时间,引导学生自己通过寻找实例来推翻刚才的结论,这样,教师做到的不仅是教给学生数学知识,更让学生认识到数。学结论的严谨性,不能通过个别例子就总结仓促的总结出结论,同时也交给了学生学习数学、思考数学、解决数学问题的方法,真正的做到“授之以鱼不如授之以渔”。
3、当学生的见解独特时,教师应给与鼓励性评价,更大限度的提高学生的学习积极性。
当然瑕不掩玉,课是一堂好课。以上仅是就课论课的一点分析,并不全面。
因篇幅问题不能全部显示,请点此查看更多更全内容