数据分析和数据挖掘的区别是什么?如何做好数据挖掘
发布网友
发布时间:2022-04-21 20:19
我来回答
共5个回答
热心网友
时间:2023-07-12 11:55
1,数据分析可以分为广义的数据分析和狭义的数据分析,广义的数据分析就包括狭义的数据分析和数据挖掘,我们常说的数据分析就是指狭义的数据分析。
2,数据分析(狭义):
定义:简单来说,数据分析就是对数据进行分析。专业的说法,数据分析是指根据分析目的,用适当的统计分析方法及工具,对收集来的数据进行处理与分析,提取有价值的信息,发挥数据的作用。
作用:它主要实现三大作用:现状分析、原因分析、预测分析(定量)。数据分析的目标明确,先做假设,然后通过数据分析来验证假设是否正确,从而得到相应的结论。
方法:主要采用对比分析、分组分析、交叉分析、回归分析等常用分析方法;
结果:数据分析一般都是得到一个指标统计量结果,如总和、平均值等,这些指标数据都需要与业务结合进行解读,才能发挥出数据的价值与作用;
互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手技的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。
3,数据挖掘:
定义:数据挖掘是指从大量的数据中,通过统计学、人工智能、机器学习等方法,挖掘出未知的、且有价值的信息和知识的过程。
作用:数据挖掘主要侧重解决四类问题:分类、聚类、关联和预测(定量、定性),数据挖掘的重点在寻找未知的模式与规律;如我们常说的数据挖掘案例:啤酒与尿布、安全套与巧克力等,这就是事先未知的,但又是非常有价值的信息;
方法:主要采用决策树、神经网络、关联规则、聚类分析等统计学、人工智能、机器学习等方法进行挖掘;
结果:输出模型或规则,并且可相应得到模型得分或标签,模型得分如流失概率值、总和得分、相似度、预测值等,标签如高中低价值用户、流失与非流失、信用优良中差等;
4,综合起来,数据分析(狭义)与数据挖掘的本质都是一样的,都是从数据里面发现关于业务的知识(有价值的信息),从而帮助业务运营、改进产品以及帮助企业做更好的决策。所以数据分析(狭义)与数据挖掘构成广义的数据分析。
热心网友
时间:2023-07-12 11:55
1.数据挖掘
数据挖掘是指从大量的数据中,通过统计学、人工智能、机器学习等方法,挖掘出未知的、且有价值的信息和知识的过程。数据挖掘主要侧重解决四类问题:分类、聚类、关联和预测,就是定量、定性,数据挖掘的重点在寻找未知的模式与规律。输出模型或规则,并且可相应得到模型得分或标签,模型得分如流失概率值、总和得分、相似度、预测值等,标签如高中低价值用户、流失与非流失、信用优良中差等。主要采用决策树、神经网络、关联规则、聚类分析等统计学、人工智能、机器学习等方法进行挖掘。综合起来,数据分析(狭义)与数据挖掘的本质都是一样的,都是从数据里面发现关于业务的知识(有价值的信息),从而帮助业务运营、改进产品以及帮助企业做更好的决策,所以数据分析(狭义)与数据挖掘构成广义的数据分析。这些内容与数据分析都是不一样的。
2.数据分析
其实我们可以这样说,数据分析是对数据的一种操作手段,或者算法。目标是针对先验的约束,对数据进行整理、筛选、加工,由此得到信息。数据挖掘,是对数据分析手段后的信息,进行价值化的分析。而数据分析和数据挖掘,又是甚至是递归的。就是数据分析的结果是信息,这些信息作为数据,由数据去挖掘。而数据挖掘,又使用了数据分析的手段,周而复始。由此可见,数据分析与数据挖掘的区别还是很明显的。
而两者的具体区别在于:
(其实数据分析的范围广,包含了数据挖掘,在这里区别主要是指统计分析)
数据量上:数据分析的数据量可能并不大,而数据挖掘的数据量极大。
约束上:数据分析是从一个假设出发,需要自行建立方程或模型来与假设吻合,而数据挖掘不需要假设,可以自动建立方程。
对象上:数据分析往往是针对数字化的数据,而数据挖掘能够采用不同类型的数据,比如声音,文本等。
结果上:数据分析对结果进行解释,呈现出有效信息,数据挖掘的结果不容易解释,对信息进行价值评估,着眼于预测未来,并提出决策性建议。
数据分析是把数据变成信息的工具,数据挖掘是把信息变成认知的工具,如果我们想要从数据中提取一定的规律(即认知)往往需要数据分析和数据挖掘结合使用。
举个例子说明:你揣着50元去菜市场买菜,对于琳琅满目的鸡鸭鱼猪肉以及各类蔬菜,想荤素搭配,你逐一询问价格,不断进行统计分析,能各自买到多少肉,多少菜,大概能吃多久,心里得出一组信息,这就是数据分析。而关系到你做出选择的时候就需要对这些信息进行价值评估,根据自己的偏好,营养价值,科学的搭配,用餐时间计划,最有性价比的组合等等,对这些信息进行价值化分析,最终确定一个购买方案,这就是数据挖掘。
数据分析与数据挖掘的结合最终才能落地,将数据的有用性发挥到极致。
热心网友
时间:2023-07-12 11:55
数据分析和数据挖掘,两者的工作内容有着不小的区别。
对于一个数据分析师来说,最重要的并不是编程技能,而是逻辑分析能力、业务理解能力、报告展示能力等。数据挖掘工程师一般情况下不会接触太多的业务。
数据分析师:基于业务,通过数据分析手段发现和分析业务问题,为决策作支持。
数据挖掘工程师:偏技术,通过建立模型、算法、预测等提供一些通用的解决方案,当然也有针对某业务的。
两者的职业路线也非常不同,数据分析师之后可以做业务、可以转产品、可以做管理;而数据挖掘工程师一般会在技术领域垂直、深入地探索,之后可能会做技术管理,也有一辈子做技术的。
热心网友
时间:2023-07-12 11:56
大数据、数据分析、数据挖掘的区别是,大数据是互联网的海量数据挖掘,而数据挖掘更多是针对内部企业行业小众化的数据挖掘,数据分析就是进行做出针对性的分析和诊断,大数据需要分析的是趋势和发展,数据挖掘主要发现的是问题和诊断:
1、大数据(big data):
指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产;
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》 中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)Veracity(真实性) 。
2、数据分析:
是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。
数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。
3、数据挖掘(英语:Data mining):
又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。
热心网友
时间:2023-07-12 11:57
1.一个主要做整理工作,一个主要做建模工作。
2. 在统一的统计指标下,通过不同的结构型思维,分析数据得出结论。