如何解释统计学中的卡方检验?

发布网友 发布时间:2022-04-21 06:49

我来回答

1个回答

热心网友 时间:2023-11-06 21:44

T代表每个格子中的理论频数。

计算方法:

卡方检验的统计量是卡方值,它是每个格子实际频数A与理论频数T差值平方与理论频数之比的累计和。

每个格子中的理论频数T是在假定两组的发癌率相等(均等于两组合计的发癌率)的情况下计算出来的,如第一行第一列的理论频数为71*(91/113)=57.18,故卡方值越大,说明实际频数与理论频数的差别越明显,两组发癌率不同的可能性越大。

卡方检验要求:

最好是大样本数据。一般每个个案最好出现一次,四分之一的个案至少出现五次。如果数据不符合要求,就要应用校正卡方。

利用统计学软件分析结果如下:

data kafang;

input row column number @@;

cards;

1 1 52

1 2 19

2 1 39

2 2 3

;

run;

proc freq;

tables row*column/chisq;

weight number;

run;

扩展资料

一、卡方检验的基本思想

卡方检验是以χ2分布为基础的一种常用假设检验方法,它的无效假设H0是:观察频数与期望频数没有差别。

该检验的基本思想是:首先假设H0成立,基于此前提计算出χ2值,它表示观察值与理论值之间的偏离程度。根据χ2分布及自由度可以确定在H0假设成立的情况下获得当前统计量及更极端情况的概率P。

如果P值很小,说明观察值与理论值偏离程度太大,应当拒绝无效假设,表示比较资料之间有显著差异;否则就不能拒绝无效假设,尚不能认为样本所代表的实际情况和理论假设有差别。

二、卡方值的计算与意义

χ2值表示观察值与理论值之问的偏离程度。计算这种偏离程度的基本思路如下。

1、设A代表某个类别的观察频数,E代表基于解析失败 (PNG 转换失败; 请检查是否正确安装了 latex, dvips, gs 和 convert): H_0 计算出的期望频数,A与E之差称为残差。

2、显然,残差可以表示某一个类别观察值和理论值的偏离程度,但如果将残差简单相加以表示各类别观察频数与期望频数的差别,则有一定的不足之处。因为残差有正有负,相加后会彼此抵消,总和仍然为0,为此可以将残差平方后求和。

3、另一方面,残差大小是一个相对的概念,相对于期望频数为10时,期望频数为20的残差非常大,但相对于期望频数为1 000时20的残差就很小了。考虑到这一点,人们又将残差平方除以期望频数再求和,以估计观察频数与期望频数的差别。

参考资料来源:百度百科-卡方检验

声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。
E-MAIL:11247931@qq.com
Top